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ABSTRACT

./-- This note shows how recent developments in the

complex variable analysis of multivariable feedback

systems can be used to determine stability with respect

to a system parameter.
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1 . Introduction

A feedback system is said to be stable if all of its

closed-loo6poles tre in the left half-plane. The stability

of a control system is therefore dependent on its

associated parameters. Sometimes in a control system

the value of a parameter is uncertain perhaps due to ageing,

deterioration, or damage; in other instances it may be

desirable, for economic reasons, to change a parameter

value. In both these cases a technique which predicts

the relative stability of a system with respect to a given

parameter would be extremely useful.

A dominant theme in recent research on complex variable

techniques for multivariable feedback systems (MacFarlane

and Postlethwaite 1977; MacFarlane, Kouvaritakis and

Edmunds 1977; Postlethwaite 1978), has been the association

of a system with two sets of algebraic functions:

characteristic gain functions and characteristic frequency

functions. In section 2 characteristic 'parameter'

functions are introduced, and used to develop the ideas of

'parametric' root loci and 'parametric' Nyquist loci from

which the relative stability of a system, with respect to

a single parameter, can be determined. To help in assessing

the degree of stability, generalizations of gain and phase

margin are given in section 3. The ideas are demonstrated

by an example in section 4. In the concluding section

tentative proposals and suggestions for future research are

made.



2. Characteristic frequency and characteristic parameter

functions

The feedback configuration considered is shown in

figure 1, where A(k2 ,k31 ...kq), B(k2 ,k3 ,.. .,kq) ,

C(k2 ,k3 #,.*kq) and D(k2 ,k3 ,*..#kq) are state-space

matrices which are dependent on (q-l) real, time-invariant

parameters and k is a scalar, time-invariant gain parameter

common to all the loops.
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Figure 1. Feedback configuration for parameter analysis

The closed-loop poles for this configuration are solutions

of

det sin - S(k) 3 = 0 (2.1)

where

S(k) A A(k 2 .* . . kq) - B(k 2 , *. . kq)Ek 1
1I m +D(k 2 8. . .,k q)3_

1

is.the closed-loop frequency matrix (Postlethwaite 1978). If

numerical values for all the parameters except one, k say,

are substituted into equation (2.1) and k considered as

a complex variable, then the resulting algebraic equation



(which for simplicity of exposition will be regarded as

irreducible) defines a pair of algebraic functions (Bliss

1966) s(kj) and k3 (s). The algebraic function s(k ) is

called the characteristic frequency function with respect

to ki, and the algebraic function k. (s) is called the

characteristic parameter function for k . (Note that the

characteristic frequency function s(g)and the characteristic

gain function g(s), introduced by MacFarlane and Postlethwaite

(1977), are equivalent to s(-k 1 _) and -k1 (s)- respectively).

The branches of s(k), for k. real, clearly define the

variation of the closed-loop poles with respect to k., and

as such are termed parametric root loci. Alternatively,

the parametric root loci can be viewed as the 00 phase

contours of k (s) on the Riemann surface domain for k (s),

known as the frequency surface for k .

Dual to the parametric root loci are the parametric

Nyquist loci or characteristic parameter loci which are the

branches of k.(s) as s traverses the imaginary axis.

Alternatively, the characteristic parameter loci can be

viewed as the ±900 phase contours of s(k.) on the Riemann

surface domain for s(k.), which will be called the parameter

J*Jsurface for kj.

If a particular system has a set of nominal parameter

values then it is possible from the set of parameter surfaces

to determine which, if any, of the parameters are sensitive

with respect to stability. To help in such an assessment

the following generalizations of gain and phase margin are

introduced.



3. Gain and phase margins

*The t90 ° phase contours of s(k) on the parameter surface

for ki trace out the boundary between stable and unstable

closed-loop poles and therefore we can define parameter gaino
and phase margins for k about a stable operating point kj

which give a measure of the relative stability of the system

with respect to k.
V

Parameter gain margin. Parameter gain margin is defined with
0

respect to a stable operating point k as the smallest change

in parameter gain about k. needed to drive the system intoJ

instability. Let di be the shortest distance along the
0

real axis from a stable operating point k. to the stability

boundary (characteristic parameter loci) on the ith sheet

of the parameter surface for kj. Then the parameter gain

margin is defined as min {di: i-l,2,...,n)
i

Parameter phase margin. On each of the n sheets of the

parameter surface for k imagine that an arc is drawn, centre
o

the origin, from a stable operating point k. until it reachesJ

the stability boundary (characteristic parameter loci). Let

be the angle subtended at the origin by the corresponding

arc on the ith sheet. Then the parameter phase margin is

defined as min(i: i=l,2,...,n}.
i

4. Example

In this section an inverted pendulum positioning system

(see figure 2) is considered and its stability analysed with

respect to one of its parameters, namely the mass of the

carriage



Figure 2. Inverted pendulum positioning system

This system has also been used by Kwakernaak and Sivan (1972),

Cannon (1967), and Elgerd (1967). The system can be modelled

by the following linearized state differential equation

(Kwakernaak and Sivan 1972).

i(t) - 0 1 0 0 x(t) + 0 U t (4.1)

F 0 01

34 M

0 o 0 1 0

-iLO 0 L, 0 j0

where u(t) is a force exerted on the carriage by a small motor;

4 is the mass of the carriage; F is the friction coefficient

associated with the movement of the carriage; and L' is given

by



II " (4.2)

where m is the mass of the pendulum; L is the distance from

the pivot to the centre of gravity of the pendulum; and J

is the moment of inertia of the pendulum with respect to

the centre of gravity.

The system is stabilizable using state feedback of the

form

u(t) = -Kx (t) (4.3)

and using the numerical values

1 kg -  (4.4)

11.65 s - 2

V O.842m

it can be found (Kwakernaak and Sivan 1972) that

K - [86.81, 12.21, -118.4, -33.44] (4.5)

stabilizes the linearized system placing the closed-loop poles

at -4.706±j 1.382 and -1.902±j3.420

We will now look at the parameter surface for M to see

how variations in the carriage mass, about an operating point

of Ikg, affect the stability of the system. The four sheets

of the mass surface, characterized by constant phase and

magnitude contours of s(M), are shown in figures 3-6, from

which the following stability margins are obtained:



parameter (mass) gain margin - 1 kg

parameter (mass) phase margin - 60

The gain margin of 1kg corresponds to reducing the carriage

mass to zero before instability occurs and the phase margin

of 60 indicates adequate damping of the closed-loop system.

Sheets 3 and 4 of the mass surface are characterized

solely by left half-plane closed-loop poles whereas sheets

1 and. 2 have both stable and unstable closed-loop poles

separated by the characteristic parameter loci. The crossings

of the real mass axes by the characteristic parameter loci

determine bounds on the mass for closed-loop stability

analogous to the way in which the characteristic gain loci

can be used to determine bounds on kI  (MacFarlane and

Postlethwaite 1977); from sheets I and 2 we find that the

closed-loop system has a 'stable mass interval' of 0 to 2.125 kg.

5. Conclusion

As indicated in this note recent developments in the

complex variable analysis of multivariable feedback systems

are not only applicable to gain and frequency but any system

parameter and frequency. In particular it has been shown how

stability with respect to a given parameter can be examined

using characteristic parameter loci (generalized Nyquist loci)

and, characteristic frequency loci (generalized Evans' root loci)

viewed on their appropriate Riemann surfaces. To obtain

stability results in terms of more than one parameter variation

seems to be a much more complicated problem but one with great

practical significance. It is felt that such results might
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i .complex variables.

It is also thought that the parameter surfaces may prove

to be useful in the design of parameter-dependent controllers

for systems in which a particular parameter suffers large

Ivariations during normal operation. For example, the

controller of an aircraft engine needs to operate

satisfactorily over a wide range of altitudes. A possible

design scheme could be

(i) to design real constant controllers at a number of

altitudes,

(ii) to obtain an altitude dependent controller by "matrix

interpolation", and finally

(iii) to analyse the stability of the system over the whole

working range using an "altitude surface".
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Fig. I Feedback configuration for parameter analysis
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